
A Design Pattern for Power System Steady State Analysis Software

GONG Cheng Ming LI Lei XU Xiu Zhi
 NARI Technology Devlopment Co. Ltd. Suzhou Power Supply Company

 gongchengming@sgepri.sgcc.com.cn lilei3@sgepri.sgcc.com.cn nickxxz@163.com

Abstract
This paper addresses a design pattern for power system

steady-state analysis software. With the addressed

design pattern, objects of the network model, analysis

problems and their solvers are identified and isolated.

By using this design pattern, efficiency of the

development and flexibility of the software can be

improved greatly.

Keywords
design pattern, power system analysis software

1. INTRODUCTION

The power system steady-state analysis software, from

the basic power flow program to very complicated

optimization tool, plays important role for today’s

power system planning and operation. Many efforts

have been put on the algorithms and their

implementation. Typical problems have been

thoroughly discussed e.g. in [Bergen et al, 2000], [Abur

et al, 2004] and [Zhu, 2009]. Some design

methodologies, including modern Object-Oriented

methodologies [Neyer el al, 1990] [Zhou, 1996] [Soman

et al, 2002], have also been introduced for the

development of the software. But existing work only

focused on one or several problems, without any pattern

being summarized for the common design of the steady-

state analysis software. Reference [Qiu et al, 2012]

introduced the application of design patterns in a set of

commercial software for simplifying the design of user

interface, data source, etc., but it less relates to the core

analysis aspect.

Patterns originated as an architectural concept

[Alexander et al 1977]. Kent Beck and Ward

Cunningham began applying patterns to programming

and presented their results at the OOPSLA conference

[Beck et al, 1989]. After the book [Gamma et al, 1994]

was published, design patterns gained popularity in

computer science.

In software engineering, a design pattern is a general

reusable solution to a commonly occurring problem

within a given context in software design. A design

pattern is not a finished design that can be transformed

directly into source or machine code. It is a description

or template for how to solve a problem that can be used

in many different situations. Object-oriented design

patterns typically show relationships and interactions

between classes or objects, without specifying the final

application classes or objects that are involved.

This paper introduces a design pattern for the power

system steady-state analysis software. This design

pattern isolates the Model, the Problem and the Solver.

The internal components of Model and Solver are well

decomposed and the relationships of the internal

components and external dependencies are analyzed.

With this design pattern, it becomes easier to compose

very complicated analysis software.

2. OVERALL ANALYSIS

2.1 Isolation of Model

Though there are different problems for power system

steady-state analysis, these problems are based on the

common power system stead-state model. It’s natural to

isolate the Model with the responsibilities

1) to represent the static properties of the power grid,

2) to represent the dynamic states of the power grid

and

3) to calculate how the static properties react to

different dynamic states.

Different problems and their solvers will share the

common Model.

2.2 Isolation of Problem

Different power system steady-state analysis problems

are distinguished by the different given conditions. For

example,

1) conditions for power flow problem are the setting

values for each bus,

2) conditions for power system state estimation are a

set of measurements

3) conditions for optimal power flow problem are the

objective and constraints.

It’s helpful and convenient to isolate the Problem with

the responsibility to precisely describe what the problem

is.

2.3 Isolation of Solver

The purpose of any steady-state analysis function is to

solve the state variables for given Model and Problem.

The core part of the analysis software is surely the

Solver and its dedicated responsibility is to efficiently

find the correct solutions.

2.4 Relationships of Model, Problem and Solver

Based on the above analysis, relationship of the Model,

Problem and Solver can be organized as figure 1. It

means that he Model and the Problem are independent,

and the Solver depends on both the Problem and the

Model.

Fig.1 Relationships of Model, Problem and Solver

3. DECOMPOSITION OF THE MODEL

According to the responsibilities of the Model analysed

in the previous section, a Model can be decomposed as

three components.

1) The Static Property, which represents the

topological structure and physical properties of the

Model. This component is mainly composed of a

set of variables which describe

a) number and IDs of buses in a grid,

b) number and IDs of the branches and injections

in a grid,

c) connections of the branches and injections,

d) parameters of buses, branches and injects.

2) The Dynamic State, which can determine a unique

state of the grid. The complex bus voltages are

commonly selected as state variables for the

steady-state analysis.

3) The Operator, which can give information on the

Model and on how the grid reacts to given dynamic

states. This part is mainly composed of a set of

methods which are responsible to calculate

a) the bus admittance matrix (Y matrix),

b) the bus impedance matrix (Z matrix),

c) the power flows of branches and bus injections,

d) the first-order derivatives of power flows to

state variables,

e) the second-order derivatives of power flows to

state variables,

f) etc.

Among the above three components, the Static Property

and the Dynamic State are independent. The Operator

depends on the Static Property and the Dynamic State.

Relationships of the components are shown in figure 2.

Fig. 2 Decomposition of Model

and relationships of the components

4. DECOMPOSITION OF THE SOLVER

A Solver is responsible to get the solution for given

Model and Problem. It’s normal that multiple solvers are

available and often necessary for one Problem. For

example, Newton solver and fast-decoupled solver are

available for power flow problem. Based on the

principle of decomposing the interface and

implementation, it’s proper to isolate a Solver Interface

from the Solver as the base of different Concrete Solver.

A Solver is normally configurable with a set of

parameters, such as convergence threshold, iteration

limitation etc. The Solver Parameter has its own explicit

responsibility so it can also be isolated.

The relationships of Concrete Solver, Solver Interface

and Solver Parameter are shown in figure 3. It’s clear

that the Solver Interface depends on the Solver

Parameter, and the Concrete Solver inherits from the

Solver Interface.

Fig. 3 Decomposition of Solver

and relationships of the components

After the isolation of Solver Interface and Concrete

Solver, the dependencies of the Solver on the Model will

be allocated to different components. Firstly, Solver

Interface only depends on Static Property and Dynamic

State in Model. Secondly, Concrete Solver depends on

Operator in the Model. Figure 4 shows the detailed

relationships of the components in Model and Solver.

Fig. 4 Detailed relationships of components

in Model and Solver

5. EXTERNAL DEPENDENCIES

The Operator and different Concrete Solver are possible

to share common data structures and lower-level solvers.

The responsibilities of these data structures and lower-

level solvers are to represent specialized mathematical

concepts and to solve standardized mathematical

problems. Sparse matrix and direct linear solvers are

examples of this kind of data structures and lower-level

solvers. These data structures and lower-level solvers

are often available from third-parties, so they can be

regarded as External Dependency. Figure 5 shows the

relationships of Operator, Concrete Solver and External

Dependency.

Fig. 5 Relationships of Operator, Concrete Solver

and External Dependency

Many of the power system steady-state analysis

problems are finally converted to problem of solving

sparse linear equations. Sparse linear solvers, normally

direct solvers [Pandit et al, 2001], will be used by most

of the Concrete Solvers. Special techniques, such as

reducing non-zero fill-ins during factorization, are

required to solve the sparse linear problems. It’s

reasonable to utilize the mature solvers from the

mathematics area. Existing solvers of this kind include

SuperLU [Li, 2005], etc. Detailed information on

available direct sparse solvers can be found in a survey

[Li, 2011] and the book [Davis, 2006]. The Sparse

Solver is normally designed based on abstract sparse

matrix [Pandit, 2001] [Davis, 2006], and the abstracted

Sparse Matrix class can be shared by the Operator for

the basic sparse matrix representation and operation.

When the Sparse Matrix and the Sparse Solver are

isolated, the relationships in figure 5 are specialized as

figure 6.

Fig. 6 Dependency of sparse matrix and sparse solver

Some other common data structures and solvers may

also be shared by the Operator or different Concrete

Solvers. They can also be isolated as external

dependencies like the Sparse Matrix and the Sparse

Solver.

6. CONCLUSION

By merging figure 6 and figure 4, the whole Model /

Problem / Solver design pattern is formed. All the

relationships of isolated components in this design

pattern is shown in figure 7.

Fig. 7 Detailed structure of the

Model / Problem / Solver design pattern

When the Model / Problem / Solver design pattern is

applied to different steady-state analysis problems and

their different solvers, the isolation of the components

becomes much clearer. Figure 8 shows an example in

which the Model / Problem / Solver design pattern is

applied to two problems (AProblem and BProblem). For

each problem, there are two concrete solvers (Sover1

and Solver2). It can be seen that common components

are isolated for well sharing.

Fig. 8 Illustration of multiple problems and solvers

Also this Model / Problem / Solver design pattern has

been applied for real product design in the author’s

companies. Higher efficiency and better quality has

been achieved by applying this design model.

There is still some further work on the addressed Model

/ Problem / Solver design pattern. The main work is to

extend the design pattern for other non-steady-state

problems such as short circuit analysis, dynamic

analysis etc.

References
 Ali Abur, Antonio G ómez Exp ósito, 2007, Power

System State Estimation: Theory and

Implementation. Marcel Dekker, New York, 2004.

 Christopher Alexander, Sara Ishikawa, Murray

Silverstein, 1977, A Pattern Language: Towns,

Buildings, Construction. Oxford University Press,

Berkeley, 1977.

 Kent Beck, Ward Cunningham, 1989, A

Laboratory for Teaching Object Oriented Thinking.

OOPSLA (Object-oriented Programming, Systems,

Languages, and Applications) ’89 Cnonference

Proceedings, ACM SIGPLAN Notices, Vol. 24,

No. 10, pp. 1-6, New Orleans, 1989.

 Arthur R. Bergen, Vijay Vittal, 2000, Power

System Analysis, 2nd Edition. Prentice Hall, New

Jersey, 2000.

 Timothy A. Davis, 2006, Direct Methods for

Sparse Linear Systems. SIAM, Philadelphia, 2006

 Erich Gamma, Richard Helm, Ralph Johnson, John

Vlissides, 1994, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-

Wesley, Boston, 1994.

 Xiaoye Li, 2005, An Overview of SuperLU:

Algorithms, Implementation, and User Interface.

ACM Transactions on Mathematical Software, Vol.

31, No. 3, pp. 302-325, 2005

 Xiaoye Li, 2011, Direct Solvers for Sparse

Matrices. August 2011. [online]. Available:

http://crdlegacy.lbl.gov/xiaoye/SuperLU/SparseDi

rectSurvey.pdf.

 F. Neyer, F. F. Wu, and K. Imhof, 1990, Object-

Oriented Programming for Flexible Software:

Example of A Load Flow. IEEE Transactions on

Power Systems, Vol. 5, No. 3, pp. 689-695, 1990.

 Shubha Pandit, S. A. Soman, S. A. Khaparde, 2001,

Design of Generic Direct Sparse Linear System

Solver in C++ for Power System Analysis. IEEE

Transactions on Power Systems, Vol. 16, No. 4, pp.

647-652, 2001.

 Weijia Qiu, Weimei Zou, Yongfeng Sun, 2012,

Design Patterns Applied in Power System Analysis

Software Package. 2012 International Conference

on Industrial Control and Electronics Engineering,

Xi’an, 2012.

 S.A. Soman, S.A. Khaparde, Shubha Pandit, 2002,

Computational Methods for Large Sparse Power

Systems: An Object Oriented Approach. Kluwer

Academic Publishers, Norwell, 2002.

 Erzhuan Zhou, 1996, Object Oriented

Programming, C++ and Power System Simulation.

IEEE Transactions on Power Systems, Vol. 11, No.

1, pp. 206-215, 1996.

 Jizhong Zhu, 2009, Optimization of Power System

Operation. Wiley-IEEE Press, Hoboken, 2009.

