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Abstract 
This paper addresses a design pattern for power system 

steady-state analysis software. With the addressed 

design pattern, objects of the network model, analysis 

problems and their solvers are identified and isolated. 

By using this design pattern, efficiency of the 

development and flexibility of the software can be 

improved greatly. 
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1.  INTRODUCTION 

 

The power system steady-state analysis software, from 

the basic power flow program to very complicated 

optimization tool, plays important role for today’s 

power system planning and operation. Many efforts 

have been put on the algorithms and their 

implementation. Typical problems have been 

thoroughly discussed e.g. in [Bergen et al, 2000], [Abur 

et al, 2004] and [Zhu, 2009]. Some design 

methodologies, including modern Object-Oriented 

methodologies [Neyer el al, 1990] [Zhou, 1996] [Soman 

et al, 2002], have also been introduced for the 

development of the software. But existing work only 

focused on one or several problems, without any pattern 

being summarized for the common design of the steady-

state analysis software. Reference [Qiu et al, 2012] 

introduced the application of design patterns in a set of 

commercial software for simplifying the design of user 

interface, data source, etc., but it less relates to the core 

analysis aspect.  

Patterns originated as an architectural concept 

[Alexander et al 1977]. Kent Beck and Ward 

Cunningham began applying patterns to programming 

and presented their results at the OOPSLA conference 

[Beck et al, 1989]. After the book [Gamma et al, 1994] 

was published, design patterns gained popularity in 

computer science. 

In software engineering, a design pattern is a general 

reusable solution to a commonly occurring problem 

within a given context in software design. A design 

pattern is not a finished design that can be transformed 

directly into source or machine code. It is a description 

or template for how to solve a problem that can be used 

in many different situations. Object-oriented design 

patterns typically show relationships and interactions 

between classes or objects, without specifying the final 

application classes or objects that are involved. 

This paper introduces a design pattern for the power 

system steady-state analysis software. This design 

pattern isolates the Model, the Problem and the Solver. 

The internal components of Model and Solver are well 

decomposed and the relationships of the internal 

components and external dependencies are analyzed. 

With this design pattern, it becomes easier to compose 

very complicated analysis software. 

 

2.  OVERALL ANALYSIS 

 

2.1 Isolation of Model 

 

Though there are different problems for power system 

steady-state analysis, these problems are based on the 

common power system stead-state model. It’s natural to 

isolate the Model with the responsibilities  

1) to represent the static properties of the power grid, 

2) to represent the dynamic states of the power grid 

and 

3) to calculate how the static properties react to 

different dynamic states.  

Different problems and their solvers will share the 

common Model. 

 

2.2 Isolation of Problem 

 

Different power system steady-state analysis problems 

are distinguished by the different given conditions. For 

example, 

1) conditions for power flow problem are the setting 

values for each bus, 

2) conditions for power system state estimation are a 

set of measurements 

3) conditions for optimal power flow problem are the 

objective and constraints.  

It’s helpful and convenient to isolate the Problem with 

the responsibility to precisely describe what the problem 

is. 

 

2.3 Isolation of Solver 

 

The purpose of any steady-state analysis function is to 

solve the state variables for given Model and Problem. 

The core part of the analysis software is surely the 

Solver and its dedicated responsibility is to efficiently 

find the correct solutions. 

 

2.4 Relationships of Model, Problem and Solver 

 

Based on the above analysis, relationship of the Model, 

Problem and Solver can be organized as figure 1. It 

means that he Model and the Problem are independent, 

and the Solver depends on both the Problem and the 

Model. 



 

 
Fig.1    Relationships of Model, Problem and Solver 

 

3.  DECOMPOSITION OF THE MODEL 

 

According to the responsibilities of the Model analysed 

in the previous section, a Model can be decomposed as 

three components. 

1) The Static Property, which represents the 

topological structure and physical properties of the 

Model. This component is mainly composed of a 

set of variables which describe  

a) number and IDs of buses in a grid,  

b) number and IDs of the branches and injections 

in a grid, 

c) connections of the branches and injections, 

d) parameters of buses, branches and injects. 

2) The Dynamic State, which can determine a unique 

state of the grid. The complex bus voltages are 

commonly selected as state variables for the 

steady-state analysis. 

3) The Operator, which can give information on the 

Model and on how the grid reacts to given dynamic 

states. This part is mainly composed of a set of 

methods which are responsible to calculate 

a) the bus admittance matrix (Y matrix), 

b) the bus impedance matrix (Z matrix), 

c) the power flows of branches and bus injections, 

d) the first-order derivatives of power flows to 

state variables, 

e) the second-order derivatives of power flows to 

state variables, 

f) etc. 

Among the above three components, the Static Property 

and the Dynamic State are independent. The Operator 

depends on the Static Property and the Dynamic State. 

Relationships of the components are shown in figure 2. 

 

 
Fig. 2    Decomposition of Model  

and relationships of the components 

 

 

4.  DECOMPOSITION OF THE SOLVER 

 

A Solver is responsible to get the solution for given 

Model and Problem. It’s normal that multiple solvers are 

available and often necessary for one Problem. For 

example, Newton solver and fast-decoupled solver are 

available for power flow problem. Based on the 

principle of decomposing the interface and 

implementation, it’s proper to isolate a Solver Interface 

from the Solver as the base of different Concrete Solver. 

 

A Solver is normally configurable with a set of 

parameters, such as convergence threshold, iteration 

limitation etc. The Solver Parameter has its own explicit 

responsibility so it can also be isolated. 

 

The relationships of Concrete Solver, Solver Interface 

and Solver Parameter are shown in figure 3. It’s clear 

that the Solver Interface depends on the Solver 

Parameter, and the Concrete Solver inherits from the 

Solver Interface. 

 

 
Fig. 3    Decomposition of Solver 

and relationships of the components 

 

After the isolation of Solver Interface and Concrete 

Solver, the dependencies of the Solver on the Model will 

be allocated to different components. Firstly, Solver 

Interface only depends on Static Property and Dynamic 

State in Model. Secondly, Concrete Solver depends on 

Operator in the Model. Figure 4 shows the detailed 

relationships of the components in Model and Solver. 

 

 



Fig. 4    Detailed relationships of components 

in Model and Solver 

 

5.  EXTERNAL DEPENDENCIES 

 

The Operator and different Concrete Solver are possible 

to share common data structures and lower-level solvers. 

The responsibilities of these data structures and lower-

level solvers are to represent specialized mathematical 

concepts and to solve standardized mathematical 

problems. Sparse matrix and direct linear solvers are 

examples of this kind of data structures and lower-level 

solvers. These data structures and lower-level solvers 

are often available from third-parties, so they can be 

regarded as External Dependency. Figure 5 shows the 

relationships of Operator, Concrete Solver and External 

Dependency.  

 

 
Fig. 5    Relationships of Operator, Concrete Solver 

and External Dependency 

 

Many of the power system steady-state analysis 

problems are finally converted to problem of solving 

sparse linear equations. Sparse linear solvers, normally 

direct solvers [Pandit et al, 2001], will be used by most 

of the Concrete Solvers. Special techniques, such as 

reducing non-zero fill-ins during factorization, are 

required to solve the sparse linear problems. It’s 

reasonable to utilize the mature solvers from the 

mathematics area. Existing solvers of this kind include 

SuperLU [Li, 2005], etc. Detailed information on 

available direct sparse solvers can be found in a survey 

[Li, 2011] and the book [Davis, 2006]. The Sparse 

Solver is normally designed based on abstract sparse 

matrix [Pandit, 2001] [Davis, 2006], and the abstracted 

Sparse Matrix class can be shared by the Operator for 

the basic sparse matrix representation and operation. 

When the Sparse Matrix and the Sparse Solver are 

isolated, the relationships in figure 5 are specialized as 

figure 6. 

 

 

 

Fig. 6    Dependency of sparse matrix and sparse solver 

 

Some other common data structures and solvers may 

also be shared by the Operator or different Concrete 

Solvers. They can also be isolated as external 

dependencies like the Sparse Matrix and the Sparse 

Solver. 

 

6.  CONCLUSION 

 

By merging figure 6 and figure 4, the whole Model / 

Problem / Solver design pattern is formed. All the 

relationships of isolated components in this design 

pattern is shown in figure 7. 

 

 
Fig. 7    Detailed structure of the  

Model / Problem / Solver design pattern 

 

When the Model / Problem / Solver design pattern is 

applied to different steady-state analysis problems and 

their different solvers, the isolation of the components 

becomes much clearer. Figure 8 shows an example in 

which the Model / Problem / Solver design pattern is 

applied to two problems (AProblem and BProblem). For 

each problem, there are two concrete solvers (Sover1 

and Solver2). It can be seen that common components 

are isolated for well sharing. 

 

 
Fig. 8    Illustration of multiple problems and solvers 

 

Also this Model / Problem / Solver design pattern has 

been applied for real product design in the author’s 

companies. Higher efficiency and better quality has 

been achieved by applying this design model. 

 

There is still some further work on the addressed Model 

/ Problem / Solver design pattern. The main work is to 

extend the design pattern for other non-steady-state 

problems such as short circuit analysis, dynamic 

analysis etc. 
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